root / plugins / luftdaten / feinstaubsensor @ b02548cc
Historique | Voir | Annoter | Télécharger (8,31 ko)
| 1 |
#!/usr/bin/env python3 |
|---|---|
| 2 |
""" |
| 3 |
|
| 4 |
=head1 NAME |
| 5 |
|
| 6 |
feinstaubsensor - Plugin to monitor one or more environmental sensors |
| 7 |
|
| 8 |
|
| 9 |
=head1 APPLICABLE SYSTEMS |
| 10 |
|
| 11 |
The "Feinstaubsensor" was developed by the OK Lab Stuttgart and is part of the |
| 12 |
Citizen Science Project "luftdaten.info" (http://luftdaten.info). |
| 13 |
|
| 14 |
Data is retrieved via HTTP requests from the sensors itself. |
| 15 |
|
| 16 |
|
| 17 |
=head1 CONFIGURATION |
| 18 |
|
| 19 |
Place a configuration entry somewhere below /etc/munin/plugin-conf.d/: |
| 20 |
|
| 21 |
[feinstaubsensor] |
| 22 |
env.sensor_hosts foo=192.168.1.4 [fe80::1:2:3:4%eth0] bar=sensor2.lan |
| 23 |
|
| 24 |
The <sensor_hosts> environment variable is a space separated list of <token>. |
| 25 |
Each <token> can be either a <host> or a combination of label and <host> (separated by the |
| 26 |
character "="). |
| 27 |
A <host> may be an IPv4 address, an IPv6 address (enclosed in square brackets) or a name to be |
| 28 |
resolved via DNS. |
| 29 |
|
| 30 |
Examples for <token>: |
| 31 |
|
| 32 |
=over 4 |
| 33 |
|
| 34 |
=item 192.168.1.4 |
| 35 |
|
| 36 |
=item foo=192.168.1.4 |
| 37 |
|
| 38 |
=item [fe80::1a:2b:3c:cafe] |
| 39 |
|
| 40 |
=item bar=[fe80::1a:2b:3c:cafe] |
| 41 |
|
| 42 |
=item feinstaubsensor-12345.local |
| 43 |
|
| 44 |
=item baz=feinstaubsensor-12345.local |
| 45 |
|
| 46 |
=back |
| 47 |
|
| 48 |
|
| 49 |
=head1 AUTHOR |
| 50 |
|
| 51 |
Lars Kruse <devel@sumpfralle.de> |
| 52 |
|
| 53 |
|
| 54 |
=head1 LICENSE |
| 55 |
|
| 56 |
GNU General Public License v3.0 or later |
| 57 |
|
| 58 |
SPDX-License-Identifier: GPL-3.0-or-later |
| 59 |
|
| 60 |
|
| 61 |
=head1 MAGIC MARKERS |
| 62 |
|
| 63 |
#%# family=manual |
| 64 |
|
| 65 |
=cut |
| 66 |
""" |
| 67 |
|
| 68 |
import collections |
| 69 |
import functools |
| 70 |
import json |
| 71 |
import os |
| 72 |
import re |
| 73 |
import sys |
| 74 |
import urllib.request |
| 75 |
|
| 76 |
|
| 77 |
graphs = [ |
| 78 |
{
|
| 79 |
"name": "wireless_signal", |
| 80 |
"graph_title": "Feinstaub Wifi Signal", |
| 81 |
"graph_vlabel": "%", |
| 82 |
"graph_args": "-l 0", |
| 83 |
"graph_info": "Wifi signal strength", |
| 84 |
"fields": [ |
| 85 |
{"api_key": "signal"},
|
| 86 |
], |
| 87 |
"value_type": "GAUGE", |
| 88 |
}, {
|
| 89 |
"name": "feinstaub_samples", |
| 90 |
"graph_title": "Feinstaub Sample Count", |
| 91 |
"graph_vlabel": "#", |
| 92 |
"graph_info": "Number of samples since bootup", |
| 93 |
"fields": [ |
| 94 |
{"api_key": "samples"},
|
| 95 |
], |
| 96 |
"value_type": "DERIVE", |
| 97 |
}, {
|
| 98 |
"name": "feinstaub_humidity", |
| 99 |
"graph_title": "Feinstaub Humidity", |
| 100 |
"graph_vlabel": "% humidity", |
| 101 |
"graph_info": "Weather information: air humidity", |
| 102 |
"fields": [ |
| 103 |
{"api_key": "humidity"},
|
| 104 |
{"api_key": "BME280_humidity", "info": "BME280", "field_suffix": "bme280"},
|
| 105 |
], |
| 106 |
"value_type": "GAUGE", |
| 107 |
}, {
|
| 108 |
"name": "feinstaub_temperature", |
| 109 |
"graph_title": "Feinstaub Temperature", |
| 110 |
"graph_vlabel": "°C", |
| 111 |
"graph_info": "Weather information: temperature", |
| 112 |
"fields": [ |
| 113 |
{"api_key": "temperature"},
|
| 114 |
{"api_key": "BME280_temperature", "info": "BME280", "field_suffix": "bme280"},
|
| 115 |
], |
| 116 |
"value_type": "GAUGE", |
| 117 |
}, {
|
| 118 |
"name": "feinstaub_pressure", |
| 119 |
"graph_title": "Feinstaub Atmospheric Pressure", |
| 120 |
"graph_vlabel": "Pascal", |
| 121 |
"graph_info": "Weather information: atmospheric pressure", |
| 122 |
"fields": [ |
| 123 |
{"api_key": "BME280_pressure"},
|
| 124 |
], |
| 125 |
"value_type": "GAUGE", |
| 126 |
}, {
|
| 127 |
"name": "feinstaub_particles_pm10", |
| 128 |
"graph_title": "Feinstaub Particle Measurement P10", |
| 129 |
"graph_vlabel": "µg / m³", |
| 130 |
"graph_info": "Concentration of particles with a size between 2.5µm and 10µm", |
| 131 |
"fields": [ |
| 132 |
{"api_key": "SDS_P1"},
|
| 133 |
], |
| 134 |
"value_type": "GAUGE", |
| 135 |
}, {
|
| 136 |
"name": "feinstaub_particles_pm2_5", |
| 137 |
"graph_title": "Feinstaub Particle Measurement P2.5", |
| 138 |
"graph_vlabel": "µg / m³", |
| 139 |
"graph_info": "Concentration of particles with a size up to 2.5µm", |
| 140 |
"fields": [ |
| 141 |
{"api_key": "SDS_P2"},
|
| 142 |
], |
| 143 |
"value_type": "GAUGE", |
| 144 |
}] |
| 145 |
|
| 146 |
|
| 147 |
SensorHost = collections.namedtuple("SensorHost", ("host", "label", "fieldname"))
|
| 148 |
|
| 149 |
|
| 150 |
def clean_fieldname(text): |
| 151 |
if text == "root": |
| 152 |
# "root" is a magic (forbidden) word |
| 153 |
return "_root" |
| 154 |
else: |
| 155 |
return re.sub(r"(^[^A-Za-z_]|[^A-Za-z0-9_])", "_", text) |
| 156 |
|
| 157 |
|
| 158 |
def parse_sensor_hosts_from_description(hosts_description): |
| 159 |
""" parse sensor list from the environment variable 'sensor_hosts' and retrieve their data """ |
| 160 |
sensors = [] |
| 161 |
for token in hosts_description.split(): |
| 162 |
if "=" in token: |
| 163 |
label, host = token.strip().split("=", 1)
|
| 164 |
else: |
| 165 |
host = token.strip() |
| 166 |
label = host |
| 167 |
fieldname = clean_fieldname("value_" + host)
|
| 168 |
sensors.append(SensorHost(host, label, fieldname)) |
| 169 |
sensors.sort(key=lambda item: item.fieldname) |
| 170 |
return sensors |
| 171 |
|
| 172 |
|
| 173 |
@functools.lru_cache() |
| 174 |
def get_sensor_data(host): |
| 175 |
""" request the data from a sensor and return a dict (value_type -> value) |
| 176 |
|
| 177 |
The result is cached - thus we do not need to take care for efficiency. |
| 178 |
|
| 179 |
Example dataset returned by the sensor: |
| 180 |
{"software_version": "NRZ-2017-099", "age":"88", "sensordatavalues":[
|
| 181 |
{"value_type":"SDS_P1","value":"27.37"},{"value_type":"SDS_P2","value":"13.53"},
|
| 182 |
{"value_type":"temperature","value":"23.70"},{"value_type":"humidity","value":"69.20"},
|
| 183 |
{"value_type":"BME280_temperature","value":"9.76"},
|
| 184 |
{"value_type":"BME280_humidity","value":"79.29"},
|
| 185 |
{"value_type":"BME280_pressure","value":"100781.03"},
|
| 186 |
{"value_type":"samples","value":"626964"},{"value_type":"min_micro","value":"225"},
|
| 187 |
{"value_type":"max_micro","value":"887641"},{"value_type":"signal","value":"-47"}]}
|
| 188 |
|
| 189 |
""" |
| 190 |
try: |
| 191 |
with urllib.request.urlopen("http://{}/data.json".format(host)) as request:
|
| 192 |
body = request.read() |
| 193 |
except IOError as exc: |
| 194 |
print("Failed to retrieve data from '{}': {}".format(host, exc), file=sys.stderr)
|
| 195 |
return None |
| 196 |
try: |
| 197 |
data = json.loads(body.decode("utf-8"))
|
| 198 |
except ValueError as exc: |
| 199 |
print("Failed to parse data from '{}': {}".format(host, exc), file=sys.stderr)
|
| 200 |
return None |
| 201 |
return {item["value_type"]: item["value"] for item in data["sensordatavalues"]}
|
| 202 |
|
| 203 |
|
| 204 |
def print_graph_section(graph_description, hosts, include_config, include_values): |
| 205 |
# retrieve the data and omit ony output, if the relevant key is missing |
| 206 |
results = [] |
| 207 |
for host_info in hosts: |
| 208 |
data = get_sensor_data(host_info.host) |
| 209 |
if data: |
| 210 |
for data_field in graph_description["fields"]: |
| 211 |
for dataset in data["sensordatavalues"]: |
| 212 |
if dataset["value_type"] == data_field["api_key"]: |
| 213 |
results.append((host_info, data_field, dataset["value"])) |
| 214 |
break |
| 215 |
else: |
| 216 |
# We cannot distinguish between fields that are not supported by the sensor |
| 217 |
# (most are optional) and missing data. Thus we cannot handle online/offline |
| 218 |
# sensor data fields, too. |
| 219 |
pass |
| 220 |
# skip this multigraph, if no host contained this data field |
| 221 |
if results: |
| 222 |
print("multigraph {}".format(graph_description["name"]))
|
| 223 |
if include_config: |
| 224 |
# graph configuration |
| 225 |
print("graph_category sensors")
|
| 226 |
for key in ("graph_title", "graph_vlabel", "graph_args", "graph_info"):
|
| 227 |
if key in graph_description: |
| 228 |
print("{} {}".format(key, graph_description[key]))
|
| 229 |
for host_info, data_field, value in results: |
| 230 |
try: |
| 231 |
label = "{} ({})".format(host_info.label, data_field["info"])
|
| 232 |
except KeyError: |
| 233 |
label = host_info.label |
| 234 |
print("{}.label {}".format(host_info.fieldname, label))
|
| 235 |
print("{}.type {}".format(host_info.fieldname, graph_description["value_type"]))
|
| 236 |
if include_values: |
| 237 |
for host_info, data_field, value in results: |
| 238 |
print("{}.value {}".format(host_info.fieldname, value))
|
| 239 |
print() |
| 240 |
|
| 241 |
|
| 242 |
action = sys.argv[1] if (len(sys.argv) > 1) else "" |
| 243 |
sensor_hosts = parse_sensor_hosts_from_description(os.getenv("sensor_hosts", ""))
|
| 244 |
if not sensor_hosts: |
| 245 |
print("ERROR: undefined or empty environment variable 'sensor_hosts'.", file=sys.stderr)
|
| 246 |
sys.exit(1) |
| 247 |
|
| 248 |
|
| 249 |
if action == "config": |
| 250 |
is_dirty_config = (os.getenv("MUNIN_CAP_DIRTYCONFIG") == "1")
|
| 251 |
for graph in graphs: |
| 252 |
print_graph_section(graph, sensor_hosts, True, is_dirty_config) |
| 253 |
elif action == "": |
| 254 |
for graph in graphs: |
| 255 |
print_graph_section(graph, sensor_hosts, False, True) |
| 256 |
else: |
| 257 |
print("ERROR: unsupported action requested ('{}')".format(action), file=sys.stderr)
|
| 258 |
sys.exit(2) |
