root / plugins / snmp / snmp__ipoman_ @ 7da1b039
Historique | Voir | Annoter | Télécharger (13,1 ko)
| 1 | 9b722622 | Rien Broekstra | #!/usr/bin/perl -w |
|---|---|---|---|
| 2 | # |
||
| 3 | # What is snmp__ipoman_ |
||
| 4 | # ---------------------- |
||
| 5 | # snmp__ipoman is a munin plugin written for the Ingrasys IpomanII 1202 |
||
| 6 | # Power Distribution Unit. It should work on any PDU conforming to |
||
| 7 | # the IPOMANII-MIB. |
||
| 8 | # |
||
| 9 | # How do I use it |
||
| 10 | # --------------- |
||
| 11 | # You can use this plugin on a system with a working munin-node. Here's |
||
| 12 | # how: |
||
| 13 | # |
||
| 14 | # 1. Copy snmp__ipoman_ to the directory where all your munin plugins |
||
| 15 | # reside, for example /usr/share/munin/plugins. |
||
| 16 | # |
||
| 17 | # 2. Make the following symlinks to snmp__ipoman_ in that same directory |
||
| 18 | # |
||
| 19 | # snmp__ipoman_inletcurrent_ |
||
| 20 | # snmp__ipoman_inletpower_ |
||
| 21 | # snmp__ipoman_inletvoltage_ |
||
| 22 | # snmp__ipoman_outletpower_ |
||
| 23 | # snmp__ipoman_outletcurrent_ |
||
| 24 | # |
||
| 25 | # (If you wonder why. I did not manage to make a plugin which has both |
||
| 26 | # the 'snmpconf' and the 'suggest' capabilities. So either I had to make |
||
| 27 | # separate plugins for all graph types, or I would have to make |
||
| 28 | # assumptions on the number of ports and the address of the ipoman in |
||
| 29 | # the script.) |
||
| 30 | # |
||
| 31 | # 3. Change to the directory where the links to munin plugins reside |
||
| 32 | # that are to be run by munin-node, for example /etc/munin/plugins/ |
||
| 33 | # |
||
| 34 | # 4. Run munin-node-configure-snmp: |
||
| 35 | # |
||
| 36 | # $ munin-node-configure-snmp --snmpversion=1 <hostname> | sh -x |
||
| 37 | # |
||
| 38 | # where <hostname> is the hostname or ip address of your ipoman. This |
||
| 39 | # will create and print a bunch of symlinks to snmp__ipoman_ which will |
||
| 40 | # output current and power usage for all available outlets of the |
||
| 41 | # ipoman, and current, power usage and voltage/frequency on all inlets |
||
| 42 | # of the ipoman. |
||
| 43 | # |
||
| 44 | # 5. Restart munin-node |
||
| 45 | # |
||
| 46 | # 6. Make an entry in your munin server's munin.conf: |
||
| 47 | # |
||
| 48 | # [<hostname of ipoman as entered in 4.>] |
||
| 49 | # address <address of munin-node> |
||
| 50 | # use_node_name no |
||
| 51 | # |
||
| 52 | # 7. Done. |
||
| 53 | # |
||
| 54 | # Copyright (C) 2009 Rien Broekstra <rien@rename-it.nl> |
||
| 55 | # |
||
| 56 | # This program is free software; you can redistribute it and/or |
||
| 57 | # modify it under the terms of the GNU General Public License |
||
| 58 | # as published by the Free Software Foundation; version 2 dated June, |
||
| 59 | # 1991. |
||
| 60 | # |
||
| 61 | # This program is distributed in the hope that it will be useful, |
||
| 62 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 63 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 64 | # GNU General Public License for more details. |
||
| 65 | # |
||
| 66 | # You should have received a copy of the GNU General Public License |
||
| 67 | # along with this program; if not, write to the Free Software |
||
| 68 | # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
||
| 69 | # |
||
| 70 | # Munin plugin to monitor power consumption and current of the sockets of an |
||
| 71 | # Ingrasys IpomanII 1202 Power Distribution Unit, or any power distribution |
||
| 72 | # unit that conforms to IPOMANII-MIB via SNMP. |
||
| 73 | # |
||
| 74 | # Parameters: |
||
| 75 | # |
||
| 76 | # config |
||
| 77 | # snmpconf |
||
| 78 | # |
||
| 79 | # Relevant OID's under .iso.org.dod.internet.private.enterprises.ingrasys.product.pduAgent.iPoManII |
||
| 80 | # .ipmObjects.ipmDevice.ipmDeviceOutlet.ipmDeviceOutletNumber.0 |
||
| 81 | # .ipmObjects.ipmDevice.ipmDeviceOutlet.ipmDeviceOutletStatusTable.ipmDeviceOutletStatusEntry.outletStatusIndex.1 |
||
| 82 | # .ipmObjects.ipmDevice.ipmDeviceOutlet.ipmDeviceOutletStatusTable.ipmDeviceOutletStatusEntry.outletStatusCurrent.1 |
||
| 83 | # .ipmObjects.ipmDevice.ipmDeviceOutlet.ipmDeviceOutletStatusTable.ipmDeviceOutletStatusEntry.outletStatusKwatt.1 |
||
| 84 | # .ipmObjects.ipmDevice.ipmDeviceOutlet.ipmDeviceOutletStatusTable.ipmDeviceOutletStatusEntry.outletStatusWH.1 |
||
| 85 | # |
||
| 86 | # Version 0.1, Aug 4, 2009 |
||
| 87 | # |
||
| 88 | # |
||
| 89 | # |
||
| 90 | # |
||
| 91 | # |
||
| 92 | # |
||
| 93 | # |
||
| 94 | # |
||
| 95 | # |
||
| 96 | # |
||
| 97 | # MAGIC MARKERS: |
||
| 98 | # |
||
| 99 | #%# family=snmpauto |
||
| 100 | #%# capabilities=snmpconf |
||
| 101 | |||
| 102 | use strict; |
||
| 103 | use Net::SNMP; |
||
| 104 | |||
| 105 | my $DEBUG = 0; |
||
| 106 | |||
| 107 | my $host = $ENV{host} || undef;
|
||
| 108 | my $port = $ENV{port} || 161;
|
||
| 109 | my $community = $ENV{community} || "public";
|
||
| 110 | my $iface = $ENV{interface} || undef;
|
||
| 111 | |||
| 112 | my $socketnumber; |
||
| 113 | my $response; |
||
| 114 | my $graphtype; |
||
| 115 | |||
| 116 | # |
||
| 117 | # Infer host, inlet/socketnumber and graphtype from the symlink name to this plugin. |
||
| 118 | # |
||
| 119 | if ($0 =~ /^(?:|.*\/)snmp_([^_]*)_ipoman_([^_]*)_(.*)$/) |
||
| 120 | {
|
||
| 121 | $host = $1; |
||
| 122 | $graphtype = $2; |
||
| 123 | $socketnumber = $3; |
||
| 124 | if ($host =~ /^([^:]+):(\d+)$/) {
|
||
| 125 | $host = $1; |
||
| 126 | $port = $2; |
||
| 127 | } |
||
| 128 | } |
||
| 129 | |||
| 130 | if (!defined($graphtype)) {
|
||
| 131 | die "# Error: couldn't understand what quantity I'm supposed to monitor."; |
||
| 132 | } |
||
| 133 | |||
| 134 | # |
||
| 135 | # The relevant OID's on the IPOMAN |
||
| 136 | # |
||
| 137 | my $oid_inletnumber = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.1.0"; |
||
| 138 | my $oid_inletindextable = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.2.1.1."; |
||
| 139 | my $oid_inletvoltage = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.3.1.2."; |
||
| 140 | my $oid_inletcurrent = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.3.1.3."; |
||
| 141 | my $oid_inletfrequency = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.3.1.4."; |
||
| 142 | my $oid_inletenergy = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.3.1.5."; |
||
| 143 | |||
| 144 | my $oid_outletnumber = ".1.3.6.1.4.1.2468.1.4.2.1.3.2.1.0"; |
||
| 145 | my $oid_outletindextable = ".1.3.6.1.4.1.2468.1.4.2.1.3.2.3.1.1."; |
||
| 146 | my $oid_outletdescription = ".1.3.6.1.4.1.2468.1.4.2.1.3.2.2.1.2."; |
||
| 147 | my $oid_outletcurrent = ".1.3.6.1.4.1.2468.1.4.2.1.3.2.3.1.3."; |
||
| 148 | my $oid_outletenergy = ".1.3.6.1.4.1.2468.1.4.2.1.3.2.3.1.4."; |
||
| 149 | # FIXME: The voltage is not defined per outlet. For now we just assume that all sockets have the voltage on inlet 1. |
||
| 150 | my $oid_outletvoltage = ".1.3.6.1.4.1.2468.1.4.2.1.3.1.3.1.2.1"; |
||
| 151 | |||
| 152 | # |
||
| 153 | # The snmpconf section prints out what oid's we need for the quantity we want to monitor, and where we find out how many ports the device has. |
||
| 154 | # |
||
| 155 | if (defined $ARGV[0] and $ARGV[0] eq "snmpconf") {
|
||
| 156 | if ($graphtype eq "inletvoltage") {
|
||
| 157 | print "number $oid_inletnumber\n"; |
||
| 158 | print "index $oid_inletindextable\n"; |
||
| 159 | print "require $oid_inletvoltage [0-9]+\n"; |
||
| 160 | print "require $oid_inletfrequency [0-9]+\n"; |
||
| 161 | } |
||
| 162 | elsif ($graphtype eq "inletcurrent") {
|
||
| 163 | print "number $oid_inletnumber\n"; |
||
| 164 | print "index $oid_inletindextable\n"; |
||
| 165 | print "require $oid_inletcurrent [0-9]+\n"; |
||
| 166 | } |
||
| 167 | elsif ($graphtype eq "inletpower") {
|
||
| 168 | print "number $oid_inletnumber\n"; |
||
| 169 | print "index $oid_inletindextable\n"; |
||
| 170 | print "require $oid_inletvoltage [0-9]+\n"; |
||
| 171 | print "require $oid_inletcurrent [0-9]+\n"; |
||
| 172 | } |
||
| 173 | elsif ($graphtype eq "outletcurrent") {
|
||
| 174 | print "number $oid_outletnumber\n"; |
||
| 175 | print "index $oid_outletindextable\n"; |
||
| 176 | print "require $oid_outletcurrent [0-9]+\n"; |
||
| 177 | } |
||
| 178 | elsif ($graphtype eq "outletpower") {
|
||
| 179 | print "number $oid_outletnumber\n"; |
||
| 180 | print "index $oid_outletindextable\n"; |
||
| 181 | print "require $oid_outletvoltage [0-9]+\n"; |
||
| 182 | print "require $oid_outletcurrent [0-9]+\n"; |
||
| 183 | } |
||
| 184 | else {
|
||
| 185 | print "require dont.graph.anything [0-9]+\n" |
||
| 186 | } |
||
| 187 | exit 0; |
||
| 188 | } |
||
| 189 | |||
| 190 | # |
||
| 191 | # For all other options we need to connect to the host in our $0. if we cannot, bail out. |
||
| 192 | # |
||
| 193 | if (!defined($host)) |
||
| 194 | {
|
||
| 195 | print "# Debug: $0 -- $1 -- $2\n" if $DEBUG; |
||
| 196 | die "# Error: couldn't understand what I'm supposed to monitor."; |
||
| 197 | } |
||
| 198 | |||
| 199 | my ($session, $error) = Net::SNMP->session( |
||
| 200 | -hostname => $host, |
||
| 201 | -community => $community, |
||
| 202 | -port => $port |
||
| 203 | ); |
||
| 204 | |||
| 205 | if (!defined ($session)) |
||
| 206 | {
|
||
| 207 | die "Croaking: $error"; |
||
| 208 | } |
||
| 209 | |||
| 210 | # |
||
| 211 | # Output graph configuration depending on what quantity we want to plot |
||
| 212 | # |
||
| 213 | if (defined $ARGV[0] and $ARGV[0] eq "config") {
|
||
| 214 | print "host_name $host\n"; |
||
| 215 | if ($graphtype eq "inletvoltage") {
|
||
| 216 | |||
| 217 | print "graph_title Inlet $socketnumber voltage/frequency\n"; |
||
| 218 | |||
| 219 | print "graph_args --base 1000 -l 0\n"; |
||
| 220 | print "graph_category system\n"; |
||
| 221 | print "graph_info This graph shows the tension and frequency to inlet $socketnumber on the Power Distribution Unit\n"; |
||
| 222 | |||
| 223 | print "voltage.label Tension (V)\n"; |
||
| 224 | print "voltage.draw LINE2\n"; |
||
| 225 | print "voltage.type GAUGE\n"; |
||
| 226 | |||
| 227 | print "frequency.label Frequency (Hz)\n"; |
||
| 228 | print "frequency.draw LINE2\n"; |
||
| 229 | print "frequency.type GAUGE\n"; |
||
| 230 | |||
| 231 | } |
||
| 232 | elsif ($graphtype eq "inletcurrent") {
|
||
| 233 | print "graph_title Inlet $socketnumber current\n"; |
||
| 234 | |||
| 235 | print "graph_args --base 1000 -l 0\n"; |
||
| 236 | print "graph_category system\n"; |
||
| 237 | print "graph_info This graph shows the delivered current to inlet $socketnumber on the Power Distribution Unit\n"; |
||
| 238 | |||
| 239 | print "current.label Current (A)\n"; |
||
| 240 | print "current.draw AREA\n"; |
||
| 241 | print "current.type GAUGE\n"; |
||
| 242 | |||
| 243 | } |
||
| 244 | elsif ($graphtype eq "inletpower") {
|
||
| 245 | print "graph_title Inlet $socketnumber power\n"; |
||
| 246 | |||
| 247 | print "graph_args --base 1000 -l 0\n"; |
||
| 248 | print "graph_category system\n"; |
||
| 249 | print "graph_info This graph shows the delivered apparent and real power to inlet $socketnumber of the Power Distribution Unit\n"; |
||
| 250 | |||
| 251 | print "apparentpower.label Apparent power (kVA)\n"; |
||
| 252 | print "apparentpower.draw LINE3\n"; |
||
| 253 | print "apparentpower.type GAUGE\n"; |
||
| 254 | |||
| 255 | print "realpower.label Real power (kW)\n"; |
||
| 256 | print "realpower.draw AREA\n"; |
||
| 257 | print "realpower.type COUNTER\n"; |
||
| 258 | |||
| 259 | exit 0; |
||
| 260 | } |
||
| 261 | elsif ($graphtype eq "outletcurrent") {
|
||
| 262 | print "graph_title Outlet $socketnumber current\n"; |
||
| 263 | |||
| 264 | print "graph_args --base 1000 -l 0\n"; |
||
| 265 | print "graph_category system\n"; |
||
| 266 | print "graph_info This graph shows the delivered current to outlet $socketnumber of the Power Distribution Unit\n"; |
||
| 267 | |||
| 268 | print "current.label Delivered current (A)\n"; |
||
| 269 | print "current.draw AREA\n"; |
||
| 270 | print "current.type GAUGE\n"; |
||
| 271 | } |
||
| 272 | elsif ($graphtype eq "outletpower") {
|
||
| 273 | print "graph_title Outlet $socketnumber power\n"; |
||
| 274 | |||
| 275 | print "graph_args --base 1000 -l 0\n"; |
||
| 276 | print "graph_category system\n"; |
||
| 277 | print "graph_info This graph shows the delivered apparent and real power to outlet $socketnumber of the Power Distribution Unit\n"; |
||
| 278 | |||
| 279 | print "apparentpower.label Apparent power (kVA)\n"; |
||
| 280 | print "apparentpower.draw LINE3\n"; |
||
| 281 | print "apparentpower.type GAUGE\n"; |
||
| 282 | |||
| 283 | print "realpower.label Real power (kW)\n"; |
||
| 284 | print "realpower.draw AREA\n"; |
||
| 285 | print "realpower.type COUNTER\n"; |
||
| 286 | |||
| 287 | exit 0; |
||
| 288 | } |
||
| 289 | exit 0; |
||
| 290 | } |
||
| 291 | |||
| 292 | if ($graphtype eq "inletvoltage") {
|
||
| 293 | my ($voltage, $frequency); |
||
| 294 | |||
| 295 | if (defined ($response = $session->get_request($oid_inletvoltage.$socketnumber))) {
|
||
| 296 | $voltage = $response->{$oid_inletvoltage.$socketnumber};
|
||
| 297 | } |
||
| 298 | else {
|
||
| 299 | $voltage = 'U'; |
||
| 300 | } |
||
| 301 | |||
| 302 | if (defined ($response = $session->get_request($oid_inletfrequency.$socketnumber))) {
|
||
| 303 | $frequency = $response->{$oid_inletfrequency.$socketnumber};
|
||
| 304 | } |
||
| 305 | else {
|
||
| 306 | $frequency = 'U'; |
||
| 307 | } |
||
| 308 | |||
| 309 | # The IPOMAN returns tension in 0.1V units. |
||
| 310 | # Convert to V |
||
| 311 | if ($voltage ne 'U') {
|
||
| 312 | $voltage = $voltage/10; |
||
| 313 | } |
||
| 314 | |||
| 315 | # The IPOMAN returns frequency in 0.1Hz units. |
||
| 316 | # Convert to Hz |
||
| 317 | if ($frequency ne 'U') {
|
||
| 318 | $frequency = $frequency/10; |
||
| 319 | } |
||
| 320 | |||
| 321 | print "voltage.value ", $voltage, "\n"; |
||
| 322 | print "frequency.value ", $frequency, "\n"; |
||
| 323 | } |
||
| 324 | elsif ($graphtype eq "inletcurrent") {
|
||
| 325 | my $current; |
||
| 326 | |||
| 327 | if (defined ($response = $session->get_request($oid_inletcurrent.$socketnumber))) {
|
||
| 328 | $current = $response->{$oid_inletcurrent.$socketnumber};
|
||
| 329 | } |
||
| 330 | else {
|
||
| 331 | $current = 'U'; |
||
| 332 | } |
||
| 333 | |||
| 334 | # The IPOMAN returns power in mA. |
||
| 335 | # Convert to A: |
||
| 336 | # |
||
| 337 | if ($current ne 'U') {
|
||
| 338 | $current = $current/1000; |
||
| 339 | } |
||
| 340 | |||
| 341 | print "current.value ", $current, "\n"; |
||
| 342 | } |
||
| 343 | elsif ($graphtype eq "inletpower") {
|
||
| 344 | my ($current, $energy, $voltage, $apparentpower); |
||
| 345 | |||
| 346 | if (defined ($response = $session->get_request($oid_inletcurrent.$socketnumber))) {
|
||
| 347 | $current = $response->{$oid_inletcurrent.$socketnumber};
|
||
| 348 | } |
||
| 349 | else {
|
||
| 350 | $current = 'U'; |
||
| 351 | } |
||
| 352 | |||
| 353 | if (defined ($response = $session->get_request($oid_inletenergy.$socketnumber))) {
|
||
| 354 | $energy = $response->{$oid_inletenergy.$socketnumber};
|
||
| 355 | } |
||
| 356 | else {
|
||
| 357 | $energy = 'U'; |
||
| 358 | } |
||
| 359 | |||
| 360 | if (defined ($response = $session->get_request($oid_inletvoltage.$socketnumber))) {
|
||
| 361 | $voltage = $response->{$oid_inletvoltage.$socketnumber};
|
||
| 362 | } |
||
| 363 | else {
|
||
| 364 | $voltage = 'U'; |
||
| 365 | } |
||
| 366 | |||
| 367 | # Calculate results |
||
| 368 | # Apparent power (VA)= Voltage (V)* Current(A). |
||
| 369 | # IPOMAN delivers voltage in units of 0.1V. and current in units of mA: |
||
| 370 | if ($current ne 'U' && $voltage ne 'U') {
|
||
| 371 | $apparentpower = ($current/1000)*($voltage/10); |
||
| 372 | } |
||
| 373 | |||
| 374 | # |
||
| 375 | # The IPOMAN returns consumed energy in Wh. We want it in J (= Ws), in order for munin to graph in W. |
||
| 376 | # |
||
| 377 | if ($energy ne 'U') {
|
||
| 378 | $energy = $energy*3600; |
||
| 379 | } |
||
| 380 | |||
| 381 | print "realpower.value ", $energy, "\n"; |
||
| 382 | print "apparentpower.value ", $apparentpower, "\n"; |
||
| 383 | } |
||
| 384 | elsif ($graphtype eq "outletcurrent") {
|
||
| 385 | my $current; |
||
| 386 | |||
| 387 | if (defined ($response = $session->get_request($oid_outletcurrent.$socketnumber))) {
|
||
| 388 | $current = $response->{$oid_outletcurrent.$socketnumber};
|
||
| 389 | } |
||
| 390 | else {
|
||
| 391 | $current = 'U'; |
||
| 392 | } |
||
| 393 | |||
| 394 | # The IPOMAN returns power in mA. |
||
| 395 | # Convert to A: |
||
| 396 | # |
||
| 397 | if ($current ne 'U') {
|
||
| 398 | $current = $current/1000; |
||
| 399 | } |
||
| 400 | |||
| 401 | print "current.value ", $current, "\n"; |
||
| 402 | } |
||
| 403 | elsif ($graphtype eq "outletpower") {
|
||
| 404 | my ($current, $energy, $voltage, $apparentpower); |
||
| 405 | |||
| 406 | if (defined ($response = $session->get_request($oid_outletcurrent.$socketnumber))) {
|
||
| 407 | $current = $response->{$oid_outletcurrent.$socketnumber};
|
||
| 408 | } |
||
| 409 | else {
|
||
| 410 | $current = 'U'; |
||
| 411 | } |
||
| 412 | |||
| 413 | if (defined ($response = $session->get_request($oid_outletenergy.$socketnumber))) {
|
||
| 414 | $energy = $response->{$oid_outletenergy.$socketnumber};
|
||
| 415 | } |
||
| 416 | else {
|
||
| 417 | $energy = 'U'; |
||
| 418 | } |
||
| 419 | |||
| 420 | if (defined ($response = $session->get_request($oid_outletvoltage))) {
|
||
| 421 | $voltage = $response->{$oid_outletvoltage};
|
||
| 422 | } |
||
| 423 | else {
|
||
| 424 | $voltage = 'U'; |
||
| 425 | } |
||
| 426 | |||
| 427 | # |
||
| 428 | # Calculate results |
||
| 429 | # Apparent power (VA)= Voltage (V)* Current(A). |
||
| 430 | # IPOMAN delivers voltage in units of 0.1V. and current in units of mA: |
||
| 431 | if ($current ne 'U' && $voltage ne 'U') {
|
||
| 432 | $apparentpower = ($current/1000)*($voltage/10); |
||
| 433 | } |
||
| 434 | |||
| 435 | # |
||
| 436 | # The IPOMAN returns consumed energy in Wh. We want it in J (= Ws), in order for munin to graph in W. |
||
| 437 | # |
||
| 438 | if ($energy ne 'U') {
|
||
| 439 | $energy = $energy*3600; |
||
| 440 | } |
||
| 441 | |||
| 442 | print "realpower.value ", $energy, "\n"; |
||
| 443 | print "apparentpower.value ", $apparentpower, "\n"; |
||
| 444 | } |
||
| 445 | exit 0; |
